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Abstract Problems involving high-dimensional data, such
as pattern recognition, image analysis, and gene clustering,
often require a preliminary step of dimension reduction be-
fore or during statistical analysis. If one restricts to a lin-
ear technique for dimension reduction, the remaining issue
is the choice of the projection. This choice can be dictated
by desire to maximize certain statistical criteria, including
variance, kurtosis, sparseness, and entropy, of the projected
data. Motivations for such criteria comes from past empir-
ical studies of statistics of natural and urban images. We
present a geometric framework for finding projections that
are optimal for obtaining certain desired statistical prop-
erties. Our approach is to define an objective function on
spaces of orthogonal linear projections—Stiefel and Grass-
mann manifolds, and to use gradient techniques to optimize
that function. This construction uses the geometries of these
manifolds to perform the optimization. Experimental results
are presented to demonstrate these ideas for natural and fa-
cial images.
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1 Introduction

In many applications involving pattern recognition, im-
age analysis, meteorology, and environmental sciences, the
presence of large datasets prohibit efficient use of statis-
tical analysis. It becomes imperative to use a dimension-
reduction technique either before or during statistical analy-
sis of data. In the context of pattern analysis, one is often
interested in extracting relevant features from observed data
and the use of linear methods is prevalent for this feature
extraction. In some applications, such as face recognition
using images, the underlying variability in observed data is
known to result from only a handful of physical variables,
such as pose, shape, and illumination, and that also pro-
vides a strong motivation for seeking low-dimension rep-
resentations of data. Such low-dimensional representations
can also provide a useful immunity to observation noise, or
clutter, that is typically high dimensional. In statistics, there
is a great interest in variable selection for problems involv-
ing clustering and classification of high-dimensional data.
In all these situations, the choice of feature, or the choice of
projection leading to dimension reduction, is itself an im-
portant issue. In fact, a number of criteria have emerged
in recent years that guide the process of dimension reduc-
tion. These criteria include combinations of properties such
as sparseness, correlation, variance, kurtosis, and indepen-
dence. Given one of these criteria how can we find a linear
projection, or a basis, such that the data projected using this
projection will achieve the given criterion? A solution to this
problem is the subject of this paper.

Consider the following setup. Let y be an n x 1 vec-
tor of random variables and we are interested in its statis-
tical analysis—density estimation, modeling, testing, etc. In
case n is very high, this analysis is intractable if tried di-
rectly on y. For example, in analysis dealing with images
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of size 100 x 100, n is 10%, and a direct analysis of y is
difficult. A common approach is to reduce dimension from
n to d, with d « n, using a linear transformation. A lin-
ear transformation is a d x n matrix that pre-multiplies y. It
seems natural and efficient to restrict to matrices with lin-
early independent rows, or even further, to impose ortho-
normality constraint on the rows. For instance, let U be
an n X d orthogonal matrix denoting an orthonormal ba-
sis of a d-dimensional subspace of R”. Then, the vector
z=UTy e R4, also called the vector of coefficients, is a
d-dimensional representation of Y or a projection of y.

In this paper we are concerned with the choice of U. Of
course, depending upon the application and the data, the ac-
tual value of U will differ. The goal is to develop a principled
approach where one chooses a criterion and then finds an op-
timal U under that criterion. Next, we present a number of
criteria that have been used in selecting U

1.1 Past criteria for dimension reduction

We start by listing some commonly used ideas.

L. Principal component analysis: One of the most com-
monly used method for dimension reduction is princi-
pal component analysis (PCA). In this approach, one
chooses U in such a way that the sum of variances of
the projected coefficients is maximized. That is,

d
UPCA = argmax ( Z variance(z; )) .

voo\iD
Another way to state this condition is: 0|>CA =
argmaxy; Ef|ly - UU Tyllz], where || - || implies the two
norm of a vector and E denotes the expectation with
respect to the joint probability density function of com-
ponents of y. In case the full density of y is not available,
one maximizes the variance estimated from the samples
of y. Let Y be the observation matrix such that ¥; ; de-
notes the /th observation of Yi.l<i<nand 1</ <k,
and define Z = UTY € RY*k Then, define

d & k
1 _o
Fy =707 ZZ(ZLI =), = Ezgl Zig. (1)

i=l1I=1

One reason for popularity of PCA is that the optimal pro-
jection, Upc 4, can be determined analytically. The solu-
tion is obtained using the singular value decomposition
(SVD) of the covariance of y. Additionally, if y is mul-
tivariate normal, then the elements of z are statistically
independent, and this provides a natural decomposition
of factors influencing y.

2. Canonical correlation analysis (CCA): For studying cor-
relations between two given vectors x and y of random
variables, with finite second moments, one seeks their
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linear projections such that the correlation between the
projections are maximized (see for example Johnson and
Wichern 2001). If =, and Xy are the covariance matrices
of xandy, respectively, and & xy 18 the cross-covariance,
then the optimal projectors are related to the dominant
eigen vectors of the matrix z;"zzx_v Ev“' EXTV 2;1/2.
Since the covariance matrices are non-negative definite
and symmetric, the projections vectors can be considered
as the columns of an orthogonal matrix U

. Fisher’s discriminant analysis: In case of labeled data,

Le. the data consists of observations from different
classes and the classes are known, the projection is cho-
sen to maximize separation between the classes, A stan-
dard approach is the use of Fisher’s discriminant analy-
sis as follows. Define between-class scatter matrix by:
S8.= 3 l(uj — (uj — w71 € R™" where j is
the index for classes, mj = E[y;], and u is the over-
all mean. The within-class scatter matrix is given by:
Sw =2, E[(y; —u;)(y, =171, Sw € R™*"_The de-
sired basis is now obtained by solving:

- det(UT SpU
[U] = argmax U SpU)

—_— 2
4] de[(UTSWU)’ @

where det(-) denotes matrix determinant. Like PCA and
CCA, the solution can be obtained directly, using a gen-
eralized eigenvalue decomposition (Golub and Van Loan
1989).

In contrast to PCA, CCA and FDA, there are some
other criteria that do not result in an analytical solutions
and require numerical strategies to find an optimal U.
Some examples are listed next.

- Sufficient dimension reduction: This idea is mainly used

in linear regression and model building problems. Pio-
neered by Cook and colleagues (see Cook and Lj 2002;
Cook 2004 and references therein), the main idea in this
approach is to find subspaces for projecting a large vec-
tor x such that, given the projected vector, the (univariate)
response variable y is independent of x. This is consid-
ered a projection of x without loss of any information
about y. The smallest such subspace is called the central
subspace. Several methods have been proposed for find-
ing the central subspace, some of which can be stated as
problems in optimization over the space of all projectors.

- Independent component analysis: Here the goal is to find

a projection such that the projected components are sta-
tistically independent. There are several ways to formu-
late ICA (Hyvirinen et al. 2001); one way is to use the
cost function:

KL(P(z1,2,...,24)|| P, (1) P2(z2) ... Py(zy)), 3)

where KL denotes the Kullback-Leibler divergence. In
this definition, P denotes the Joint probability, and P;s
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denote the marginal probabilities of the random variables
z;s. The desired transformation is obtained by finding a
minimizer of this cost function. Since it is difficult to es-
timate KL divergence using observations of random vari-
ables, several approximations of Kullback-Leibler func-
tion have been applied to obtain ICA in the literature
(Hyvirinen et al. 2001 ). One idea is to maximize kurtosis
of the projected variables and that is one of the main ideas
pursued in this current paper. Comon (1994) proposed
the use of negentropy, and further its polynomial approx-
imation, to approximate minimization of mutual infor-
mation and Bell and Sejnowski (1995) used a stochas-
tic gradient technique to solve such optimization prob-
lems. It must be noted that some of these formulations
do not require orthogonality of basis; in fact, they often
use over-complete or non-orthogonal bases. Hyvirinen
(1999) proposed a “FastICA” algorithm for computing
ICA using an over-complete basis.

1.2 More recent criteria for feature extraction

Some additional ideas have been proposed in the recent
years are presented next. Many of them are motivated in part
by applications in image analysis where empirical studies
have shown that image statistics, under a variety of represen-
tations, exhibit certain striking properties. As summarized
in Srivastava et al, (2003), these properties are: (i) estimated
densities are unimodal with modes at zeros, (ii) the underly-
ing random quantities are leptokurtic, i.e. their kurtosis are
much larger than that of a Gaussian and the tails are heav-
ier. Consequently, there is interest in seeking representations
that emphasize these properties.

1. Maximal kurtosis: There are several motivations to seek
projections that maximize kurtosis. Firstly, kurtosis has
been proposed earlier as an objective function for in-
dependent component analysis (Hyvirinen et al. 2001).
Secondly, experiments indicate that the level of non-
Gaussianity of pixel values in a image seems to relate
to information content of images (Srivastava et al. 2003).
Therefore, there is interest in seeking linear projections
that maximize non-Gaussianity and result in heavy-tailed
distributions. Of course, a difficult question is: How
should one measure non-Gaussianity? There are several
ideas but perhaps the simplest one is to use kurtosis, The
kurtosis has the nice property that it is invariant to certain
transformations such as translation and scale of the origi-
nal image vector y; these transformations are considered
as nuisance variables in image analysis and may result
from changes in intensity of illumination or color maps.
In other words, scaling of pixels, or adding a constant
to pixels, does not often change the information content,
and hence the basis search criterion should be invariant
to them.

For an n x d matrix U, let z=UTy be the 4-
dimensional projection of y into RY. We are interested
in choosing U that maximizes

d
ZkUﬁ(Zz’),

i=1

E[(z; — u;)*
where kurt(z;) = E[[((z,l—\:,l)l]l and u; = E[z;].

Note that z is a linear transformation of y, so the mo-
ments of z can in principle be computed from the mo-
ments of y. However, in many practical situations we do
not have exact moments of ¥, and instead are given its ob-
servations. So we will focus on estimated quantities, such
as the sample kurtosis, throughout this paper. As earlier,
let Y be the observation matrix such that ¥; ; denotes the
Ith observation of Vi.l<i<nandl<] <k, and define
Z=UTy e Rdxk, Then, the total estimated kurtosis of
z is given by:

k=12 S (Zi)—7)*
FK=ZFKJ, FK.iE( Xil_] o _'22,
P ko (L@ -2)?)

k
_ 1
where 7; = l? ,2',: Ziy. “4)

The definition of sample kurtosis sets up the optimiza-
tion problem for maximizing kurtosis: U/ = argmax g,
Fg(U;Y).

- Maximal sparseness: Another criterion of interest in fea-

ture extraction and dimension reduction is sparseness.
A collection of random variables is considered sparse if
the observations of that collection contains only a few
non-zero values with a high probability. Motivated by
the studies of human visual system and by a growing
understanding of its efficiency, researchers have focused
on sparsity of the projected data as a criterion for di-
mension reduction. Empirical studies of natural images
show that the distributions of their wavelet coefficients
are typically sparse (Donoho and Flesia 2001). This
means that the energy of the image is mostly concen-
trated in a small proportion of wavelet coefficients (Mal-
lat 1989; Olshausen and Field 1996). This result seems
intuitively relevant because natural images may gener-
ally be described in terms of a small number of struc-
tural primitives—for example, edges, lines, or other ele-
mentary features. One of the ways to quantify sparseness
of the random variable v is (Olshausen and Field 1996;
Field 1994): spars(v) = —E{log(l + v2)}. The sample
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Sparseness of z; is given by: —kl Zf.:, log(1+ ij), and
the total sparseness of the vector Z is given by:

d k
. 1 2 T
Fs(U; Y):—];Z] § llog(l+Zl-'j), z=UTy. (5
1= j:

Maximizing sparseness is to solve the problem: 7 =
argmaxy; Fg(U; Y). An obvious solution, in case of un-
constrained optimization, is Zij=0,i=1, cend, j=
1,... k. Therefore, sparseness is seldom used alone as a
criterion for dimension reduction; it is used in conjunc-
tion with other criteria to form composite objective func-
tions.

3. Optimal entropy: In physics, entropy is considered to be
a measure of chaos or uncertainty in a dynamic system.
Similarly, in information theory, entropy provides a mea-
sure of information contained in a random quantity. Low
entropy implies larger information and vice-versa. En-
tropy also plays a very important role in independent
component analysis (Hyvirinen et al. 2001). For a con-
tinuous scalar random variable v, with probability den-
sity function f(v), the (differential) entropy is defined
as Hv) = —ffv(t) log f,()dt. One use of entropy is
in defining the mutual information between two random
variables v and w, according to:

I(v;w) = H(v) — H(v|w),

where H (v|w) is conditional entropy and denotes the un-
certainty about v when w is known. Thus, 1 (v; w) is the
reduction in uncertainty about v due to the knowledge
of w. One can use this information-theoretic framework
in dimension reduction as follows. We may seek projec-
tions such that the mutual information between two ran-
dom vectors is maximized. Or, we might seek projections
that make two random vectors independent of each other.
In either case, the idea is to maximize or minimize an en-
tropy function, conditional or unconditional, by choosing
optimal projections. We will focus on such a subproblem
in the current paper. The evaluation of entropy requires
the knowledge of underlying probability density func-
tion. In case one only has samples, an estimate of the
density function is used instead. For instance, a kernel
density estimator for z;, using the Gaussian kernel, is:

(x=Z; ;)

25, (6)

1
e
210

) 1<
p,-<x>=,;j§\/_

where o is the bandwidth of the kernel. To find the total
entropy associated with the vector z, we need to estimate
their joint density function. To avoid that calculation, we
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make a gross approximation and consider the sum of in-
dividual entropies:

d

d
A== [ sieooncs @)=Ym o

i=1 i=1

and the optimization problem is to find [ —
argmax, Z;I:I H;(U; Y). We must point out that in the
literature on independent component analysis (ICA), one
rarely uses an estimated density function to study en-
tropy. It is most often approximated using lower order
moments and polynomials involving them (Hyvérinen
et al. 2001).

Additional criteria can be generated by taking convex com-
binations of the individual criteria listed above. In this paper
we consider a few combinations described next.

e As a first combination, we study a convex combination
of kurtosis and variance. The cost function to minimize
is given by Fxy = AFg + (I =X)Fy,fora0 < < 1.
For small values of A we expect the maximizer to be sim-
ilar to Upcy but for other values the solution will differ
from UPCA-

* Another possibility is to use a convex combination of kur-
tosis and sparseness. Thus, maximizing Fg g will result in
a basis that not only increase kurtosis but also sparseness:
Fgs=AFx + (1 — M) Fg.

o One can also study a convex combination of variance and
Sparseness, resulting in the goal function Fsy: Fgy =
AFs+ (1 = M) Fy.

Although we consider these composite criteria as problems

in joint optimization, they can also be treated as Bayesian
problems, or penalized likelihood problems, with one of the
terms providing a prior density with the other specifying the
likelihood function (Hyvdrinen et al. 2001).

1.3 Our approach: optimization over manifolds

Based on the previous discussion one can envision a variety
of criteria that can be used for finding a suitable projection,
and the choice of an appropriate criterion depends on the
nature of the problem. Given such a criterion, how does one
find an optimal projection U ? Our approach is to optimize
the associated goal function over the space of all possible
orthogonal projections U. This amounts to searching for U,
where

A

U =argmax F(U; Y), (8)
U

where F is a scalar-valued function. Since analytical solu-
tions for F's of interest are not known, we will take a numer-
ical approach to search for [ What is the set over which
this optimization should be performed? There are two pos-
sibilities:



Stat Comput (2010) 20: 267282

271

1. U is an n x d orthogonal matrix and the required space
could be the set of all such matrices. This set is called a
Stiefel manifold:

Sna={U e R UTy = 1} 9)

2. In some cases the goal function depends on the subspace
and not a particular basis we choose to represent it. In
other words, F(U) = F(UO) where O is a d x d rota-
tion matrix. For instance, this is the case for the variance
function Fy. In this case one searches over the space of
all subspaces rather than searching over the space of all
orthogonal bases. This set is called the Grassmann man-
ifold G, 4.

Both Stiefel and Grassmann manifolds are nonlinear spaces,
Le. they are not vector spaces, and the traditional opti-
mization techniques, such as those used in Hyvirinen et al.
(2001), do not apply directly. We will use the differen-
tial geometry of these two manifolds to construct gradient
processes to solve optimization problems. Several papers
have addressed the problem of solving numerical optimiza-
tion on Stiefel and Grassmann manifolds. Of those, we note
the seminal paper by Edelman et al. (1998) which utilizes
the geometry of these manifolds to derive deterministic gra-
dient approaches such as Newton-Raphson method. In ear-
lier works, we have applied a stochastic gradient search al-
gorithm to maximize classification performance in image
analysis (Liu et al. 2003; Srivastava and Liu 2005). Simi-
lar problems have also been studied by Fiori and colleagues
(Fiori 2002; Fiori 2002), especially for independent compo-
nent analysis. The approach taken in the current paper, but
for cost functions involved in pattern recognition and clas-
sification, has earlier been explored by Srivastava and Liu
(2005).

The rest of this paper is organized as follows. Section 2
describes the representation of orthogonal linear projections
as elements of Stiefel and Grassmann manifolds. Section 3
introduces basic elements from differential geometry of
these manifolds that are important in our approach, and Sec-
tion 4 describes our solution to the optimization problems
formulated in Section 1.2. Finally, Section 5 presents some
experimental results using natural and face image databases.

2 Representations of linear projections

We are interested in linear transformations that can be used
for reducing data size. Such transformations can be denoted
by n x d non-singular matrices. If the columns are forced
to be linearly independent, which seems natural for study-
ing linear transformations, an efficient representation is ob-
tained by further assuming that the columns are orthogonal
with unit length. Denoting such a linear transformation via a

matrix U € R" 4, [ satisfies the property that UTU = I,
where Iy is the d x d identity matrix. This orthogonality
constraint sets up our representation spaces as follows.

1. Stiefel manifold: The set of all n x d orthogonal matri-
ces forms a Stiefel manifold S, 4, as stated in Eq. 9.
Each element of S, , provides an orthonormal basis
for a d-dimensional subspace of R”". Su.4 can also be
viewed as a quotient space of SO(n), where SO(n) =
{Q e R™"|QTQ =1,, det(Q) = 1}, as follows. First,
consider SO(n — d) as a subset of SO(n) using the em-
bedding: ¢ : SO(n — d) — SO(n), defined by

¢1(A)=[g’ g]eSO(n), A€SOm —d).

Accordingly, SO(n — d) here consists of those rota-
tions in SO(n) that rotate only the last (n — d) compo-
nents in R", leaving the first d unchanged. In this no-
tation, S, 4 can be viewed as the quotient space S, g =
SO(n)/$1(SO(n — d)) or simply SO(n)/SO(n — d).

2. Grassmann manifold: As stated earlier, a Grassmann
manifold is the set of all d-dimensional subspaces of R”.
Let SO(d) x SO(n — d) be a subset of SO(n) using the
embedding ¢, : (SO(d) x SO(n — d)) — SO(n):

0 A
A1 €50(d), Ay € SO(n —d).

$2(A1, Ag) = [A' 0 ] € SO,

Then, Gy 4 is a quotient space S, 4/SO(d) or SO(n)/
- $2(S0(d) x SO(n — d)), or simply SO(n)/(SO(d) x
SO(n — d)).
For an orthogonal matrix U € R"*4_ we will use [U]
to denote an element of G, 4, where

[U1={U0 e R"™|0 € S0(d)).

That is, [U] denotes the equivalence class of all orthog-
onal bases spanning the same d-dimensional subspace
of R",

In summary, (i) elements of SO(n) form full rotations in R” ,
(i1) elements of S, ; form a subset where rotations within
an (n — d)-dimensional subspace, corresponding to the last
n — d components of R”, are ignored, and (iii) elements of
Gn.4 form a subset where, additionally, rotations within the
first d components are also ignored. Consequently, many
properties of S, 4 and G, 4 are inherited from SO(n). Both
are compact manifolds and continuous functions defined on
them attain their maximum (or minimum) values on the
manifolds.

We emphasize the choice of orthogonal bases in repre-
senting linear transformations as it leads to a significant re-
duction in computational cost. Solving for an orthogonal
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basis on S, 4 or G, 4 leads to a smaller search space as
compared to searching for optimal linear transformations on
(nd)-dimensional space of n x d matrices. It also provides
stability to iterative optimization algorithms by ensuring that
the basis vectors remain unit length and the basis matrix is
always full ranked.

3 Tools for gradient searches

Our approach is to use stochastic gradient to solve the op-
timization problem stated in Eq. 8. Before we describe the
final algorithm, we present some basic tools from differen-
tial geometry of S, 4 that are needed in this optimization.
In particular, we are interested in defining tangent spaces,
gradient vector fields, and gradient flows.

3.1 Tangent spaces of Stiefel and Grassmann manifolds

In a gradient-based search we need to define and compute
the gradient of F with respect to the elements of Sy and
Gn.a. Since these manifolds are nonlinear, this is accom-
plished using tangent spaces, whose elements also act as
derivatives of functions. Nonlinearity of these spaces causes
the tangent spaces to differ from point to point on.

1. Stiefel case: Let J € R"*4 be a tall-skinny matrix, made
up of the first d columns of 1,; J acts as the “identity”
element in S, 4. Let Q € SO(n) be a matrix that rotates
the columns of U to align with the columns of J, i.e.
QU = J, or QT =[U V], where V € R"*®=4) js an
orthogonal basis of the null space of U. Note that the
choice of Q is not unique. In this notation, the space of
vectors tangent to S, 4 at a point U, denoted Ty (Sp.q),
can be stated as follows:

Ty (Sn,d)

:{QT L_gT g]J|C=—CT,CeRdX",

Be Rdx(n—d) }

— IQT L_(;T] IC=—CT,C€RdXd,

B eRdx(n—d)}
—{Uc-VBT|Cc=-CT,CeR,
B e R¢x(n=d)y, (10)

Later on, we will be interested in projecting an arbi-
trary matrix D € R"*¢ onto the tangent space Ty (Sn.a)
for a given point U € S, 4. According to Eq. 10, an el-
ement of Ty (S, 4) takes the form UC — VB T we need
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to find an appropriate C and B such that |[D — UC +
T T

v BT ||2 becomes zero. This leads to: C* = (—_—D—U;U-—Dl

and B* = —DT V. In other words. the orthogonal projec-

tion of D onto the tangent space Ty (S, ¢) is given by
M : R > Ty(Sy.a):
-DTU+UTD
U( + )
2
+vvTiD. (1)

Mny(D)=UcC*-VB*T =

2. Grassmann case: The tangent space at [U] € G, g is
given by:

T[U](gn.d) = QT 0 T B J|Be Rdx(n—d)
= {_VBT | Be REx =Dy, 12)

The orthogonal projection of D onto the tangent space
Ty (Gn.q) is given by I3 : R"™4 > Ty (Gn.a):

MyD)=VV'D, ie B*=-D'V. (13)

The formulas are very similar in the two cases except C =0
in the second case.

3.2 Gradient vector fields

We can now define gradient vector fields associated with the
given functions F on S, 4 or Gn.a. A gradient vector field
is a map from a space to its tangent spaces such that it as-
signs a gradient vector at each point. In other words, for any
U € Sp.a, G(U) € Ty(Sna) is the gradient of F at U. We
remind the reader that the gradient at a point is the direction
of maximal increase in the value of F at that point. There
are several ways of computing G. We will take an extrin-
sic approach where we will first compute the gradient of F
in the ambient space R"*4. Then, we will project this full
gradient to Ty (Sy,.4) to obtain the gradient on Snd-

Let D = % be the gradient of F in R"*4 for a goal func-
tion F,i.e. Dy p = 0—‘;7,51—) We can compute D using the chain
rule as follows:

Dl,p =

d k
F oF dZ;
Yy v

du,, dzdu,

Recall that ¥ ; is the /th observation of y;, U is the pro-
jection matrix and Z =U Ty is the matrix of observations
of z. The partial derivative :;—lzjll;’; can be shown to be §; Y7,
where §;,, is the Kronecker delta. Combining these terms,

AZi i . . .
we find that the term —(,—'ﬁl is an n x d matrix that contains

Y. j € R" in its ith column and zero everywhere else. There-
fore, the matrix D simplifies to:
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D=YwT,
oF

where the entries of W are W; ; = 37
ij

(15)

The remaining issue is to compute the matrix W for a
given objective function F. Once we have W and, thus,
D =YWT, D can be projected onto the tangent spaces
Ty (Sn.a) and Tjy)(Gn.4) using the projection IT; and I,
respectively, to obtain a gradient vector field on S,, 4 or Gnd.

Next, we study the calculation of W for some of the goal
functions considered earlier in Sect. 1.

e Kurtosis: For Fg given by Eq. 4, its derivative with re-
spect to the (elements of) matrix Z is given by:

oF k—1)2 a-b
Wiy = ok D7 —. )
3Zi~j k (Zl=1(zi.l —Zi)%)
wherei=1,...,d,j=1,...,k, and where

k k
_ e L a2
a= 4(;(21.1 Zi) (61,1 k)) ;(zl.l Zi)°,
k k 1
b =4(Z(Zi.1 —z:-)“) (;zu - z',-)(&,j - ;))

=1

e Sparseness: For Fs given in Eq. 5, its derivative with re-
spect to the matrix Z is:
dFs 2 Z;

V=57 = oo a7

e Variance: For Fy given by Eq. 1, its derivative with re-
spect to the matrix Z is:

Wy)ij = 37,
ij

2 I . i
= 1| @ -2 2 2= | (18)

=1

e Entropy: If we replace the estimated density function in
Eq. 7 with its discrete approximations, the integral is re-
placed by a summation, with the total entropy being:

d N
H= —Z(Zﬁi log<ﬁ£)>,
r=1 \[=1

where pl is the estimated values of pdf of z,, evaluated
on the /th bin denoted by #, and N is the number of bins.
P! is estimated using the rth row of the matrix Z = UTY .
Now, we can calculate the required derivative Wy = ‘é—lzf
as follows:

Wi j=—=

1 O A
=~y 2+ loep ~ Zi )
I=1

-2; )?

xe 22 | (19)
) | .z 2
where p; = A =1 @

o Kurtosis and variance: If the objective function is given
by F = AFg + (1 — A)Fy, then its derivative with respect
to Z is given by Wgy = AWg + (1 — MWy

e Variance and sparseness: For the objective function F =
AFs 4+ (1 — A)Fy, the derivative with respect to elements
of Zis: Wys =AWgs+ (1 — ) Wy.

e Kurtosis and sparseness: For the function F = AFg +
(I — A)Fg, the derivative with respect to elements of Z
is: Wgs =AWk + (1 — L) Ws.

In each of these cases, starting from W, one can compute
the actual gradient of F on Stiefel S, 4 or Grassmann Gn.d
as follows. First, compute D, the full derivative of F in the
space R"*4  using Eq. 15. Then,

1. In case of a Stiefel manifold, project D onto Ty (Sp.q) us-
ing I1; given in Eq. 11. Call the projected element GU).
This establishes a gradient vector field of F on Snd.

2. In case of a Grassmann manifold, project D onto Ty(Gy 4)
using ITy given in Eq. 13. Call the projected element
G(U). This establishes a gradient vector field of F
onGy, 4.

3.3 Gradient flows on Stiefel and Grassmann manifolds

For the purpose of this discussion, we focus on the Stiefel
manifold S, 4; the case of the Grassmann manifold can be
obtained simply by restricting the Stiefel case.

Given a gradient vector field G on a manifold Sp.a or
Gn.d, a process X (1) € S, 4 is called its gradient flow if it
satisfies the relation

dX(t)
dt

=G(X(@)). (20)

An important issue here is: Given a smooth vector field G,
how to solve Eq. 20 for the flow X (£)? On a computer, one
can approximate the solution using the following discretiza-
tion: for a small step size § > 0, one can generate a discrete-
time process {X (t8),s = 1,2, ...} that will approximate the
solution of Eq. 20 as & gets smaller. As stated in Sect. 3.1,
G(U) € Ty(S,.4) takes the form:

(RU):QT[~§T g]JeR”%

where C is skew-symmetric and Q7 = [U V]. Let the inner

skew-symmetric matrix be called A = [_ZT g] e R"™ " 1t
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can be shown that a discrete approximation of X (¢) is ob-
tained using the update:

Xi+115 = QT exp(3A)J, (21)

where exp denotes the matrix exponential. Note that both
Q and A depend on the current location X (¢68) although we
have not shown this dependence explicitly. A discrete imple-
mentation of gradient search involves starting from an initial
condition, and iteratively updating using Eq. 21.

Note that A is an n x n matrix, n being rather large in
practice, and the computation of matrix exponential is an
order O(n3) operation. However, the matrix A here has a
structure that can be exploited to reduce this computational
cost. If the submatrix C = 0, then A reduces to a convenient
form that can be exponentiated using O (nd?) computations
(see Sect. 3.4 for details of this idea). With a non-zero C , We
do not know of any efficient, i.e. order O (nd 2, algorithm to
compute exp(A). Therefore, we decompose the update in
two ordered steps: Let U = X (¢8) be the current state and
Q, V be as defined earlier. Let D be the full gradient of F
in R"*4_ The two steps are as follows:

1. Update subspace: In this step, we flow perpendicular to
the sets [U] by setting C = 0 in the skew-symmetric ma-
trix A. This update is given by:

Xat1y5 = 07 exp (3[_27 g]) J. (22)

Recall that B = —DTV e R4*(=d) Thjs exponential is
computed efficiently as described in Sect. 3.4.

2. Update basis: In this step, we flow parallel to the or-
bit [U] and we update the basis of the current subspace
(spanned by columns of X (t+1)s), while keeping that sub-
space fixed. It essentially rotates the current axes in the
direction specified by the gradient of F. This update is
given by:

X415 = Xa11sexp(8:C) (23)

where C is a d x d skew-symmetric matrix that cap-
tures the gradient direction of function F( 0)=FUO0)
at O = Iy, and where U = )~((,+|)5, &1 is a gradient
step size chosen to update the basis. One can use the
Baker-Campbell-Hausdorff formula for relating C to C
but we have not explored that relation. Instead, we have
decomposed the gradient direction in the larger space
(Sn.a) into two components: one for updating the sub-
space in G, 4 and the other for updating the basis in
SO(d). Note that the step sizes § and 81 can be different
for two different gradient processes. Their values are cho-
sen empirically—not too small as the convergence will
be slow and not too large to avoid overshooting the ex-
tremum. It can be shown that: C = (S — 8T)/2, where
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S = )?(TIH)SYWT. Exponential of C is O(d>) operation
and can be performed fast since d is rather small in our
applications.

To construct a gradient flow on a Grassmann manifold, we
simply remove the second step in the update process.

3.4 Computational issues

There is a computational step in the previous section that
requires further consideration. In this section we study an
efficient strategy for that update step that is central to our
gradient search. This idea was presented earlier in papers
(Edelman et al. 1998; Srivastava and Liu 2005) but is re-
peated here for convenience.

Exponential map Given a matrix A of the type: A =
[_gr g], with B € R*"=d) the goal is to compute
exp(A)J efficiently without resorting to full matrix expo-
nential in n x n. This can be computed using the following

algorithm.

Algorithm 1

1. Compute singular value decomposition of the matrix B:
B = H\©H] , where © is ad x (n — d) diagonal matrix.

2. Set matrix Hj; to the first d columns of the matrix H,.

3. Set matrix © to the first d columns of the matrix (CKH
0 e R¥*, diagonal.

4. Compute matrices I' = cos(®]) and T = sin(®;). The
matrices I', & € RY*4 are also diagonal.

5. Compute the matrix exp(A)J as

T
H\TH| ] 24)

exp(A)J = [—Hzl EH,T

4 Optimization algorithm

In each of the applications stated in Sect. 1, the goal of find-
ing an optimal dimension-reduction transformation reduces
to solving an optimization problem on a Stiefel or a Grass-
mann manifold. In this section, we use the tools introduced
in the last section to develop a (stochastic) gradient type ap-
proach to solving such problems. The goal here is to con-
struct a stochastic gradient process, governed by Markov
chain dynamics, in such a way that the process converges
to a global optimum in the limit (Geman and Hwang 1987).
A useful idea in this context, that has been pursued earlier in
Liu et al. (2003) for optimization on Grassmann manifolds
and in Srivastava (2000) for MCMC-type random sampling
on Grassmann manifolds, is to utilize a Metropolis-Hastings
type acceptance-rejection step. Here, the stochastic gradient
part provides candidates for updating estimates, but they are
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accepted or rejected according to a probability density func-
tion that depends upon F. It uses randomly-perturbed ver-
sions of the gradient directions to find candidates for updat-
ing the chain; these candidates are accepted and rejected ac-
cording to a certain probability. The search for global solu-
tions, in general, is a hard problem. One commonly used so-
lution is simulated annealing. We adapt our Metropolis algo-
rithm to result in an annealing framework as follows: (i) we
introduce a temperature T that is multiplied to the random
perturbations of gradient, and (ii) acceptance/rejection func-
tion is governed by T. As iterations proceed, 7; is decreased
slowly according to a slow cooling schedule, index ¢ indi-
cates the current temperature on step number . Of course,
if we start with T = 0, we will get a purely deterministic
gradient algorithm.

ForM =S8, 4 or G, 4,let F: M — R, be a performance
function such that we seek an optimal point of F. One can
define a vector field on M associated with gradient of F.
In general this vector field has to be smooth although we
can allow to a finite set of points in M where this field is
discontinuous. This is because the probability of reaching
this set in practice is zero. The gradient flow is approximated
by Eq. 21, and has the limitation that it converges to a local
maximum of the function F. Define an orthogonal basis of
the set of skew-symmetric matrices using the elements:

1 e ey .
ﬁy lfk = l,l = J’

E;jk,1)= _%’ ifk=j1=i; E,‘jER”X" (25)
0, otherwise,

where 1 <i < j<n.If werestricti,jtol <i < j<d,

then the set {E;;} spans the set of matrices of type [g 8],

and we call these basis matrices ES If werestrict 1 <i <d,
d+ 1< j <nthen the set {E;;} spans the set of matrices of
type [_%T g], and we call these basis matrices E 5 We can
use this notation to add random terms to submatrices C and
B separately and still preserve the structure of A. Let A be
the skew-symmetric matrix included in the gradient G(U) of
a function F on S, 4. A random perturbation of A is given
by:

d n
A=A+\V2T, ) ) rijES

i=1 j=d+1

d d
+V2T, Y)Y i jES (26)

i=1 j=1

where r; ; are distributed normally with mean zero and vari-
ance % In case of a Grassmann manifold, the last term
is zero. T; is the temperature for simulated annealing and
follows a slow cooling schedule during the evolution of

the algorithm. If we update the states using A, instead

of A, we obtain a stochastic perturbation of the gradient
update. However, we add a step of acceptance/rejection

that decides whether the point suggested by A is ac-
cepted or not. The acceptance/rejection function is simply

F(Unew)=F(U,
min{e(_)Tr—(_d‘L), 1}, where U,y is the previous point and
U,.w is the candidate point generated by A. This is when F
is being maximized, otherwise the signs for the two terms
in the exponent are changed. Initially, when T; is high, the
candidates are accepted more frequently while later on only
the good candidate points have a high probability of being
accepted.
The full algorithm is presented next.

Algorithm For a given objective function F, this algo-
rithm updates the current state X; € G, 4 (Sy.4) to the state
X(t+1) € Gn.a (Sp.a) using the following sequence of steps.

1. Update the space:
(a) Compute the matrix D according to Eq. 15, where
the matrix W is computed using the formula appro-
priate for the chosen F.
(b) For U = X5, compute the matrix V = aull(UT).
(c) Compute the elements of the tangent vector accord-
ingto B = -DTv.
(d) Generate r; ; ~ N(O, %) and calculate matrix B =
B+ «/ﬁZL Y imdn ’i.ng-
(e) Compute )2(,“)3 = Q,T ¢34 J using fast computation
of 47 in Eq. 24, where A= 9, F].
2. In case the optimization is on Stiefel manifold, the fol-
lowing steps are added:
(a) For the current state, )2(,4_1)5, compute S = X(Ttﬂ)a X
YWT and C = (S—ST)/2.
(b) Generate r; j ~ N(0, -;—) and form C = C + /2T; x
7:1 lela ’i.jES-
(c) Generate a candidate for the next state according to
X+1)s — 5{(:+|)56’5'C-
3. Set Uggng to be X(t+1)6~
4. Generate u ~ Uniform(0,1), and calculate p =
min{e'ATt‘E , 1}, where AF = F(U¢yng) — F(Xys). Ifu < p,
then X(;41)s = Ucana, and if u > p then X(s11)5 = X(1)s.
5. Set T4 =1 and =1+ 1.Goto Step 1.

Here y > 1 is the cooling ratio for simulated annealing
with a typical value of 1.0025. This algorithm is an exam-
ple of a larger family of algorithms that perform optimiza-
tion over manifolds with nonlinear constraints. It is also a
particularization of Algorithm A.20 (p. 200) (Robert and
Casella 1999), where some asymptotic properties of the re-
sulting Markov chain are discussed. These convergence re-
sults rely on sufficiently slow decrease in annealing temper-
ature, a condition that is difficult to establish in a practical
situation. Therefore, one relies on experimental results to
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(b)

Fig. 1 (a) Examples of original natural images and some down-sampled images, (b) face images used in the experiments presented here

Fig. 2 The results of the y . 1800 T T T T T T T
experiments with goal function | o~ —— ] 1600 : :
Fx using the stochastic gradient 1400 |

method on S, 4 :

PP SRR 4 1200 4
{ 1000 1
................ 800 : p
................ 400 R
) 05 1 5 2 zs % o5 1 15 2 25 3 35 4
x10° x10°

(a) Fx(X¢)/d found using a random
initial condition and stochastic gradi-
ent is plotted vs t. The local maximal

(b) Fk(X:)/d found using a ran-
dom initial condition and determinis-
tic gradient is plotted vs t. The local

value of Fx /d is 1719.9. maximal value of Fx /d is 1662.721.

w e Ak o L R e T A s

(c) The images of the basis at the point of convergence found using
the stochastic search.

evaluate algorithmic performance. Experimental results pre-
sented in the next section point to the success of this algo-
rithm in solving some of the problems targeted in this paper.

Similar to any other numerical procedure, the performance
of Algorithm is ultimately tied to the choice of parameters
such as § and the cooling schedule. It must be noted that this
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(a) The goal function Fs(X:)/d is
plotted vs t. The local maximal
value of Fs/d is —1.49.

(d) The images of of the basis vec-
tors at the point of convergence.

(b) Fk(X:)/d is plotted vs t.

(c) Fv(X:)/d is plotted vs t.

[} 5 10 1.5 2‘0 2‘5 3‘0 35
(e) The evolution of the recognition
rate.

Fig. 3 The results of the experiments with goal function Fs using the stochastic gradient method on S, 4

dependence on parameters may render it ineffective in some
practical situations.

5 Experimental results

For the experimental results presented in this section, we
have used two publicly available databases.

e The first one is the database of natural images obtained
from the home page of Hans van Hateren’s Lab (url
is hlab.phys.rug.nl/imlib/index.html). This contains im-
ages of natural scenes: trees, roads, buildings, and fields,
and the original images are much larger in size; we
have down-sampled them for our experiments. We extract
patches of size 32 x 32 from these larger images to form
observations of y. Some examples of these original im-
ages and the down-sampled images are shown in Fig. 1(a),
top and bottom rows, respectively. In this setting, the di-
mension of the observation space is n = 32 x 32 = 1024,
and we use k = 2400 of such images in our experiments.

e The second type is “The ORL Database of Faces”, a data-
base of face images obtained from the site http://www.cl.
cam.ac.uk/research/dtg/attarchive/facedatabase.html.

There are ten different images of each of 40 distinct sub-
jects; each image has size 112 x 92 and is taken under
varying lighting conditions, pose, scale, facial expres-
sions and the presence/absence of glasses. The reason for
selecting face images is the possibility of studying the
problem of human recognition. In addition to optimize
different criteria mentioned earlier, we can also moni-
tor the recognition performance under different projec-
tions. This data set was downsized to the dimensionality
56 x 46, resulting in n = 2576, and we divided images of
this face database into two disjoint sets. One half (200) of
these images were used as a training set, so k = 200, and
the remaining half were used as a test set. The training set
contains images of 40 people with 5 facial expressions,
and the test set consists of images of the same 40 peo-
ple with 5 different facial expressions. Some examples of
these images are given in Fig. 1(b). We used the nearest
neighbor classifier for recognizing (classifying) test im-
ages although any such classifier can be used here.

Throughout these experiments, the choice of n and d is
determined according to computational convenience, rather
than a precise guiding principle.
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(a) Frv(X:)/d is plotted vs t. The
local maximal value of Fkv/d is
82.7197
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(d) Fs(X:)/d is plotted vs t.

(e) The images of the basis vectors
at the point of convergence.
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s

(¢) Fv(X:)/d is plotted vs t. ’

(f) The images of the basis vectors
found using the PCA method.

Fig. 4 The results of the experiments with the goal function Fxy, A =1— 1073

Maximizing kurtosis To study maximization of Fk, given
in Eq. 4, we used a set of natural images, with d = 10,
n = 1024, and k = 2400. In this experiment, we used the
stochastic gradient method to maximize Fx on S, 4 with
three different initial points: (i) random initial condition,
(ii) initial condition generated by PCA method, and (iii) ini-
tial condition generated by ICA method. The ICA algo-
rithm used here is the FastICA which could be down-
loaded from the site of the Department of Computer Sci-
ence and Engineering at Helsinki University of Technol-
ogy (www.cis.hut.fi/projects/ica/fastica/). The initial tem-
perature for simulated annealing was T = 10 for the ran-
dom initial condition and the PCA initial condition, while it
was T = 100 for the experiments with the ICA initial con-
dition. The evolution of the goal function Fg looks simi-
lar for all three cases, it increases and then stabilizes. As
an example, we show the evolution of the function Fx for
the random initial condition in Fig. 2(a). As a comparison,
we also present the evolution of the same function using a
random initial condition but a deterministic gradient search.
The stochastic search results in a slightly improvement in the
result and, hence, we use that method in the rest of the paper.
The images formed by re-arranging individual columns of
U at the point of (stochastic search) convergence are shown
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in Fig. 2(c). A few conclusions can be drawn from these
results. Firstly, the algorithm finds a stable maximum for
each of the three initial conditions, although the convergence
seems to be more local than global. Although the search per-
formance improves, over a deterministic gradient approach,
due to the presence of a stochastic components, the conver-
gence to a global solution is far from guaranteed. Secondly,
in terms of the resulting basis vectors, their images seem to
contain edge-like structures at different angles that may rep-
resent frequently occurring boundaries in the original im-
ages.

Maximizing sparseness The experiment on maximizing
Fs, as given in Eq. 5, was conducted using the Face Im-
age database, with n = 2576, d =5, k = 200. Again, the
search was conducted using the stochastic gradient method
on a Stiefel manifold with random initial condition. To show
the results, first we plot the evolution of the sum of sparse-
ness Fs versus the iteration index in Fig. 3(a). Dashed lines
in Fig. 3 (and all Figures now on) show the values achieved
by the PCA basis. Additionally, we monitor the evolution
of Fx (Fig. 3(b)) and Fy (Fig. 3(c)) for the process that
is maximizing Fs. We can see from the resulting plots that
F increases at first and then stabilizes; the resulting value
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(a) Fks(X:)/d is plotted vs t. The
locally maximal value of Fks/d is
4.5298.
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(d) Fv(X:)/d is plotted vs t.

Fig. 5 The results of the experiments with the goal function Fgg, A =0.5

is much higher than that achieved by a PCA basis. It is well
known that the PCA projections do not provide optimal spar-
sity in the projected data. It is also interesting to note the in-
crease in Fx even though it is not a part of the optimization
process. It shows that two criteria Fx and Fg are closely re-
lated. Since this experiment involved face database, we also
studied the changes in recognition performance generated
using a nearest neighbor classifier. It can be seen in Fig. 3(e)
that the recognition performance goes down as the sparsity
increases. This implies that image representations that re-
sult in sparse coefficients are generally not good for use in
face recognition and classifications. The images of the basis
vectors at the point of convergence are shown in Fig. 3(d).

Maximizing kurtosis and variance jointly We used the fa-
cial data for these experiments using the stochastic gradi-
ent search on S, 4. The goal function used here is Fgv is
for A = 1 — 107>, The initial conditions were chosen ran-
domly. Figure 4(a) shows the evolution of the goal func-
tion Fgy. To study the evolution of other quantities for this
gradient search, we plot the functions Fx in Fig. 4(b), Fy
in Fig. 4(c), Fs in Fig. 4(d), and the images of the basis
vectors at the point of convergence in Fig. 4(e). Since Fgvy

(b) Fx(X:)/d is plotted vs t.

(e) The images of the basis vectors
at the point of convergence.

4 5 6 [} 1 2 3 4 5 6
x10° x10°

(c) Fs(X:)/d is plotted vs t.

o 5 10 15 20 25 30 3
(f) The evolution of the recognition
rate.

is a linear combination of Fx and Fy, it is reasonable to

‘expect an increase in both these functions during the max-

imization of Fgy. Also, as mentioned earlier, an increase
in variance tends to decrease the level of sparseness asso-
ciated with a representation. This is also reflected here in
the fact that Fg decreases. In terms of comparisons with the
PCA basis, the solution obtained by the optimization process
provides higher kurtosis and higher sparseness, but smaller
variance.

All the vectors of the basis at the point of convergence
look similar, but the second vector looks similar to the im-
ages of the basis vectors found by the PCA method. The
images of the PCA vectors are given in Fig. 4(f). This simi-
larity appears because Fy is a part of the goal function, it is
maximized together with kurtosis, and PCA maximizes Fy.

Maximizing kurtosis and sparseness jointly In this case,
we form Fgs with A = 0.5. The evolution of the goal func-
tion Fk s is shown in Fig. 5(a) and it shows a steady increase
in Fks as the algorithm evolves. The next two plots in this
figure show the evolution of the functions Fk (Fig. 5(b))
and Fs (Fig. 5(c)). Since they both contribute in the defi-
nition of Fkg, we see an expected increase in their values
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(a) Fsv(X:)/d is plotted vs ¢. The
locally maximal value of Fsy/d is
3.6840 x 10*.
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(d) Fx(X¢)/d is plotted vs ¢.
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(b) Fv(X:)/d is plotted vs t.

(e) The images of the basis vectors
at the point of convergence.

Fig. 6 The results of the experiments with the goal function F. sv, A=09

as the algorithm proceeds. The evolution of F v is shown in
Fig. 5(d) and it shows a sharp decrease in Fy right at the
start of the algorithm. This is expected as both the kurtosis
and the sparseness typically steer the algorithm towards a
decrease in the variance. The images of the basis vectors at
the point of convergence are shown in Fig. 5(e), while the
rate of recognition is shown in Fig. 5(f).

Maximizing sparseness and variance Jjointly Here we de-
scribe the results for A = 0.9, Figure 6(a) shows the evo-
lution of the goal function F sv, while Fig. 6(b) plots the
evolution of Fy, Fig. 6(c) plots Fs, and Fig. 6(d) plots the
change in Fg. In this experiment we used a higher initial
temperature T and, therefore, we see a larger fluctuation in
the process initially. As seen in these results, neither Fy nor
Fsy reached the levels found by the PCA method. This is
obvious, because the PCA method produces the maximum
value of Fy. The sparseness term bounces for some time
and then stabilizes. The images of the basis vectors at the
end of the optimization are given in Fig. 6(e). The vectors
of the basis at the point of convergence look like the im-
ages, which we found by the PCA method, but grainy. For a
comparison, the PCA images are given in Fig. 4(f). The evo-
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(f) The evolution of the recognition
rate.

lution of the recognition rate is given in Fig. 6(f). It increases
slightly from 65.5% to 69.5%.

Entropy The data set used for this experiment is the set
of natural images. We used 1000 images, so that n = 1024,
d =10, and k = 1000. Here we present results from a de-
terministic maximization of entropy on G, 4 with random
initial condition. Figure 7(a) shows the evolution of the goal
function H. One can see that the stabilized value of H is
higher than that achieved by a PCA basis. The PCA method
maximizes variance, which is the measure of the variability;
and the entropy is the measure of uncertainty, so they are
positively related. Figure 7(b) shows the variance Fy and
Fig. 7(c) shows the sparseness F .

The H is rapidly increasing at the very beginning, then
the increase becomes slower, and the sum of the entropy
stabilizes. The sum of the sparseness F s decreases at a high
rate at the beginning, then rate becomes lower and value sta-
bilizes. The graphs of these two functions look as a mirror
reflection of each other with horizontal line as axis of sym-
metry. The sum of the sparseness Fy stabilizes at a level
which is much lower than that for the PCA method. The
sum of the variances increases as the function H ; as ex-
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(e) The images of the basis vectors at the point

of convergence.

(f) The images of the basis vectors found by the

PCA method.

Fig. 7 The results of the experiments with the goal function H

pected they change in the same direction. The evolution of
the sum of the kurtosis is given in Fig. 7(d). Figure 7(e)
shows the images of the basis vectors at the point of con-
vergence and Fig. 7(f) shows the images of the components
of a PCA basis. One can see that these images look sim-
ilar: they have geometrical structures on them, which are
lighter spots. In the case of the goal function H images are
grainy, especially images of the first, third, and ninth vec-
tors.

6 Summary
We have presented the problem of dimension reduction of

the data as a problem of the choice of a linear projection.
The basic idea was to define a criterion which might include

combinations of the properties of the data such as sparse-
ness, variance, kurtosis, and independence and find a linear
projection or basis such that the projected data will achieve
the optimal value of the given criterion. We introduced the
problem of dimension reduction as an optimization problem
on the Stiefel or Grassmann manifold and utilized differen-
tial geometry of these manifolds to construct a stochastic
search to solve this problem. This search used a multi-flow
approach. An algorithm for finding a local optimal point was
presented. We illustrated the algorithm using two different
collections of images—one of natural images and other of
facial images.
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